Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Serap Yazıcı,^a* Nesuhi Akdemir,^b Erbil Ağar,^b Cihan Kantar^b and Ismet Şenel^a

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: yserap@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.004 Å R factor = 0.042 wR factor = 0.116 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The asymmetric unit of the title compound, $C_{17}H_{13}ClN_2O$, contains two independent molecules with no significant difference in their structures. The molecules are non-planar. The dihedral angle between the two benzene rings is 79.20 (8)° in one molecule and 79.54 (8)° in the other.

Comment

The title compound, (I), is a starting material in the synthesis of symmetrically and unsymmetrically octasubstituted phthalocyanines (McKeown, 1998). Phthalocyanines are traditionally used as dyes and pigments (Moser & Thomas, 1983). For many years, phthalocyanines have attracted continued interest in various research fields, *e.g.* chemical sensors, electrochromism, batteries, applications in colours, catalysis, photodynamic therapy, semiconductive materials, liquid crystals and non-linear optics (Leznoff & Lever, 1989–1996).

The asymmetric unit contains two independent molecules with no significant difference in their structures (denoted A and B; Fig. 1). The average N=C bond distance in the cyano groups is short enough to indicate their triple-bond character. The C7-O1 bond distance is 1.353 (3) Å in molecule A and 1.346 (3) Å in molecule B, similar to that reported in 4-(1-naphthoxy)phthalonitrile (Karadayı *et al.*, 2003).

The C1-C6 and C7-C12 rings are not coplanar; the dihedral angle between rings C1A-C6A and C7A-C12A is 79.20 (8)°, and that between rings C1B-C6B and C7B-C12B is 79.54 (8)°. The bond angles of C10-C16-N1 and C11-C17-N2 are close to 180° in molecules A and B. There are no hydrogen bonds or π - π stacking interactions between molecules.

Experimental

2,3,5-Trimethylphenol (2.07 g, 15.20 mmol) and 4,5-dichloro-1,2-dicyanobenzene (1.00 g, 5.08 mmol) were stirred at room temperature in dry dimethylformamide (50 ml) under N₂. Dry fine-powdered potassium carbonate (2.10 g, 15.22 mmol) was added in portions (12 \times 1 mmol) every 10 min. The mixture was stirred for a further 48 h

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved 4-Chloro-3-(2,3,5-trimethylphenoxy)phthalonitrile

Received 12 January 2005 Accepted 28 January 2005

Online 26 February 2005

and poured into ice–water (200 g). The product was filtered off and washed with (10% *w/w*) NaOH solution and water until the filtrate was neutral. Recrystallization from ethanol gave the pure product (yield 1.00 g, 66.40%). Single crystals were obtained from ethanol at room temperature *via* slow evaporation (m.p. 413 K). Elemental analysis calculated for $C_{17}H_{13}CIN_2O$: C 68.81, H 4.42, N 9.44%; found: C 68.84 H 4.40 N 9.46%.

 $D_x = 1.312 \text{ Mg m}^{-3}$ Mo *K* α radiation

reflections $\theta = 2.2-27.9^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$

Prism, colourless

 $0.45 \times 0.33 \times 0.24 \text{ mm}$

6783 independent reflections

5862 reflections with $I > 2\sigma(I)$

T = 150 K

 $\begin{aligned} R_{\rm int} &= 0.143\\ \theta_{\rm max} &= 27.9^\circ \end{aligned}$

 $h = -16 \rightarrow 16$

 $k = -16 \rightarrow 16$

 $l = -24 \rightarrow 24$

Cell parameters from 15 817

Crystal data

$M_r = 296.74$ Monoclinic, <i>Cc</i> a = 12.6986 (8) Å
$M_r = 296.74$ Monoclinic, <i>Cc</i> a = 12.6986 (8) Å
Monoclinic, Cc a = 12.6986 (8) Å
a = 12.6986 (8) Å
b = 12.5724 (6) Å
c = 18.9151 (10) Å
$\beta = 95.635 \ (4)^{\circ}$
$V = 3005.2 (3) \text{ Å}^3$
Z = 8

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: by integration (*X-RED32*; Stoe & Cie, 2002) $T_{min} = 0.911, T_{max} = 0.957$ 13 168 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0761P)^2]$
$wR(F^2) = 0.116$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
6783 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
379 parameters	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected	geometric	parameters	(Å,	°).
----------	-----------	------------	-----	-----

C7A-O1A	1.353 (3)	C7 <i>B</i> -O1 <i>B</i>	1.346 (3)
N1A-C16A-C10A	179.4 (3)	N2A-C17A-C11A	179.2 (3)
N1B-C16B-C10B	179.3 (3)	N2B-C17B-C11B	179.5 (3)

H atoms were included in calculated positions and refined using a riding model, with aromatic C-H = 0.93 Å and CH₃ C-H = 0.96 Å, and $U_{iso}(H) = 1.5U_{eq}(C)$. Friedel reflections were merged before the

Figure 1

The asymmetric unit of the title compound, showing the atom-numbering scheme and with 50% probability displacement ellipsoids.

final refinement; the Flack (1983) parameter was -0.01 (5).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Karadayı, N., Akdemir, N., Ağar, E., Gümrükçüoğlu, I. E. & Büyükgüngör, O. (2003). Acta Cryst. E59, 0945–0946.
- Leznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications, Vols 1–4. Weinheim & New York: VHC Publishers Inc.
- McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
- Moser, F. H. & Thomas, A. L. (1983). In *The Phthalocyanines*, Vols. 1 and 2. Boca Raton, Florida: CRC Press.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.