Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Serap Yazıcı, ${ }^{\text {a }}$ * Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar, ${ }^{\text {b }}$ Cihan Kantar ${ }^{\text {b }}$ and Ismet STenel ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: yserap@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.116$
Data-to-parameter ratio $=17.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Chloro-3-(2,3,5-trimethylphenoxy)phthalonitrile

The asymmetric unit of the title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$, contains two independent molecules with no significant difference in their structures. The molecules are non-planar. The dihedral angle between the two benzene rings is $79.20(8)^{\circ}$ in one molecule and $79.54(8)^{\circ}$ in the other.

Comment

The title compound, (I), is a starting material in the synthesis of symmetrically and unsymmetrically octasubstituted phthalocyanines (McKeown, 1998). Phthalocyanines are traditionally used as dyes and pigments (Moser \& Thomas, 1983). For many years, phthalocyanines have attracted continued interest in various research fields, e.g. chemical sensors, electrochromism, batteries, applications in colours, catalysis, photodynamic therapy, semiconductive materials, liquid crystals and non-linear optics (Leznoff \& Lever, 19891996).

(I)

The asymmetric unit contains two independent molecules with no significant difference in their structures (denoted A and B; Fig. 1). The average $\mathrm{N} \equiv \mathrm{C}$ bond distance in the cyano groups is short enough to indicate their triple-bond character. The $\mathrm{C} 7-\mathrm{O} 1$ bond distance is 1.353 (3) \AA in molecule A and 1.346 (3) \AA in molecule B, similar to that reported in 4-(1naphthoxy)phthalonitrile (Karadayı et al., 2003).

The $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$ rings are not coplanar; the dihedral angle between rings $\mathrm{C} 1 A-\mathrm{C} 6 A$ and $\mathrm{C} 7 A-\mathrm{C} 12 A$ is 79.20 (8$)^{\circ}$, and that between rings $\mathrm{C} 1 B-\mathrm{C} 6 B$ and $\mathrm{C} 7 B-\mathrm{C} 12 B$ is 79.54 (8) ${ }^{\circ}$. The bond angles of $\mathrm{C} 10-\mathrm{C} 16-\mathrm{N} 1$ and $\mathrm{C} 11-$ $\mathrm{C} 17-\mathrm{N} 2$ are close to 180° in molecules A and B. There are no hydrogen bonds or $\pi-\pi$ stacking interactions between molecules.

Experimental

2,3,5-Trimethylphenol ($2.07 \mathrm{~g}, 15.20 \mathrm{mmol}$) and 4,5 -dichloro-1,2-dicyanobenzene ($1.00 \mathrm{~g}, 5.08 \mathrm{mmol}$) were stirred at room temperature in dry dimethylformamide (50 ml) under N_{2}. Dry fine-powdered potassium carbonate ($2.10 \mathrm{~g}, 15.22 \mathrm{mmol}$) was added in portions (12 $\times 1 \mathrm{mmol}$) every 10 min . The mixture was stirred for a further 48 h

Received 12 January 2005 Accepted 28 January 2005 Online 26 February 2005
and poured into ice-water $(200 \mathrm{~g})$. The product was filtered off and washed with $(10 \% w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave the pure product (yield $1.00 \mathrm{~g}, 66.40 \%$). Single crystals were obtained from ethanol at room temperature via slow evaporation (m.p. 413 K). Elemental analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$: C 68.81, H 4.42, N 9.44\%; found: C $68.84 \mathrm{H} 4.40 \mathrm{~N} 9.46 \%$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=296.74$
Monoclinic, $C c$
$a=12.6986(8) \AA$
$b=12.5724(6) \AA$
$c=18.9151(10) \AA$
$\beta=95.635(4)^{\circ}$
$V=3005.2(3) \AA^{3}$
$Z=8$
$D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 15817
reflections
$\theta=2.2-27.9^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.45 \times 0.33 \times 0.24 \mathrm{~mm}$

Data collection	
Stoe IPDS-2 diffractometer	6783 independent reflections
ω scans	5862 reflections with $I>2 \sigma(I)$
Absorption correction: by	$R_{\text {int }}=0.143$
integration $(X-R E D 32 ;$	$\theta_{\max }=27.9^{\circ}$
Stoe \& Cie, 2002)	$h=-16 \rightarrow 16$
$T_{\min =0.901, ~}^{\text {max }}=0.957$	$k=-16 \rightarrow 16$
13168 measured reflections	$l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.116$
$S=1.05$
6783 reflections
379 parameters

Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme and with 50% probability displacement ellipsoids.
final refinement; the Flack (1983) parameter was -0.01 (5).
Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Karadayı, N., Akdemir, N., Ağar, E., Gümrükçüoğlu, I. E. \& Büyükgüngör, O. (2003). Acta Cryst. E59, o945-o946.

Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1-4. Weinheim \& New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Moser, F. H. \& Thomas, A. L. (1983). In The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \&Cie, Darmstadt, Germany.

